
AD-A277 476

NAVAL POSTGRADUATE SCHOOL
Monterey, California

=DTIC
T H E S I S M 2 D,1994D

IMPLEMENTATION AND EVALUATION OF AN
ASYNCHRONOUS GROUP MEMBERSHIP

PROTOCOL

by

David J. Pezdirtz, Jr.

December, 1993

Thesis Advisor: Shridhar B. Shukla

Approved for public release; distribution is unlimited

94-09507 -.
III lI9IIII III3 III8I I05 9 -

94 3 28 059

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions

for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Dec 1993 Master's Thesis, Final

4. TITLE AND SUBTITLE Implementation and Evaluation of an Asynchronous Group 5. FUNDING NUMBERS
Membership Protocol

6. AUTHOR(S) David J. Pezdirtz, Jr.

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
ition of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE
distribution unlimited A

13. ABSTRACT (maximwn 200 words) A group membership protocol provides the mechanisms to ensure the consistent group views
among a group-oriented distributed processes. The protocol is required to dynamically re-configure the group views among the
various members in the event of a change to the group due to a new member joining or a member departing. The departure may be
voluntary or involuntary. The protocol must provide a scheme to detect the failure of any of the members and re-configure the group.
Multiple changes to the group must be perceived at all members in the same order. This thesis deals with a particular group
membership protocol. The protocol structures the group as a logical ring. Changes to the group are accomplished using a two-phase
scheme. The agreement phase consists of circulation of an agree token. Processing the token makes a pending change known to all
members. The commit phase incorporates the changes in the correct order. This thesis presents an implementation of this
asynchronous group membership protocol. The main feature is that the decentralized nature of the protocol eliminates the need for a
dedicated coordinator of changes. The processing requirements for the protocol are likewise distributed. The processing time
required to implement a change is explored.

14. SUBJECT TERMS Asynchronous Group Membership Protocol, Unix based, distributed processing. 15. NUMBER OF PAGES

196
16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

Implementation and Evaluation of an Asynchronous Group
Membership Protocol

by

David J. Pezdirtz, Jr.
Lieutenant, United States Navy

B.S.C.S., University of Vermont, 1983

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCTENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1993

Author: 6 a

Approved by:
S/zridhar B. Shukia, Thesis Advisor

Ral1dy L. Borchardt, Second Reader

Michael A. Morgan, Chairman
Department of Electrical and Computer Engineering

ii

ABSTRACT

A group membership protocol provides the mechanisms to ensure the consistent

group views among a group-oriented distributed processes. The protocol is required to

dynamically re-configure the group views among the various members in the event of a

change to the group due to a new member joining or a member departing. The departure

may be voluntary or involuntary. The protocol must provide a scheme to detect the failure

of any of the members and re-configure the group. Multiple changes to the group must be

perceived at all members in the same order.

This thesis deals with a particular group membership protocol. The protocol

structures the group as a logical ring. Changes to the group are accomplished using a

two-phase scheme. The agreement phase consists of circulation of an agree token.

Processing the token makes a pending change known to all members. The commit phase

incorporates the changes in the correct order.

This thesis presents an implementation of this asynchronous group membership

protocol. The main feature is that the decentralized nature of the protocol eliminates the

need for a dedicated coordinator of changes. The processing requirements for the

protocol are likewise distributed. The processing time required to implement a change to

the group is shown to have a linear relationship to the group size.

Aooees3:o• ,'or

NI
DTIEC Tj4.b

I t p tt : ¢. t t••l_

JI ýttt I.ii... •t .. 41

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND .. 1

1. Distributed Com puting .. 1

2. Group M em bership .. 1

B. SCOPE AND CONTRIBUTION ... 2

C. ORGANIZATION OF THE THESIS .. 2

II. GROUP MEMBERSHIP PROTOCOL ... 3

A. GROUP MEMBERSHIP PROTOCOL OVERVIEW 3

1. A ssum ptions .. 3

2. O verview .. 3

3. Processing of Individual Changes .. 5

a. Departure Processing .. 6

b. Join Processing .. 6

III. PROTOCOL CHANGES ... 7

A. LOST INITIAL PARAMETERS MESSAGE 7

1. Problem ... 7

2. Solution .. 7

3. Justification 8

4. Side effects ... 8

B. DUPLICATE PROCESSING ... 10

1. Problem .. 10

2. Solution .. 11

3. Justification .. 11

C. INVALID DELETE TOKEN ... 14

1. Problem .. 14

2. Solution .. 14

3. Justification ... 15

D. LOST TOKEN ACKNOWLEDGMENT .. 15

1. Problem .. 15

2. Solution .. 15

3. JustificaL on .. 15

E. AGREEPROCESSOR 16

1. Initiate-Agreement M essage .. 17

iv

2. External Token Pool .. 18

a. Token Originator Failed ... 18
b. Duplicate Processing .. 20

3. Tokens .. 22

a. Joinreqst Tokens .. 22

b. A gree Tokens ... 22

c. Commit Tokens .. 23

4. Side Effects ... 23

F. MULTIPLE JOINS .. 24
1. Problem .. 24

2. Solution .. 25
3. Justification ... 26

G. OTHER IMPROVEMENTS .. 26

1. Joinreqst Token Processing ... 26

a. Problem .. 26

b. Solution ... 27
2. Commit Token Generation .. 27

a. Problem .. 27

b. Solution ... 27
3. Message Queue in the FIFO Channel Layer 28

H . SY N O PSIS ... 30

IV. PERFORMANCE OF THE GMP ... 31

A. LATENCY .. 31

B . TESTIN G ... 33

V. METHODS FOR IMPROVING PERFORMANCE 35

A. MESSAGE REDUCTION ... 35

1. TokenPool versus Tokens ... 35

2. Periodic Token Pool .. 36

3. Piggyback the Token Pool .. 36

B. SINGLE-THREADED PROGRAM .. 37

1. Problem .. 37

2. Solution .. 37

3. Justification ... 37

VI. CONCLUSIONS AND RECOMMENDATIONS 39

v

LIST OF REFERENCES ...

A PPEN D IX .. 41

INITIAL DISTRIBUTION LIST .. 185

vi

LIST OF TABLES

Table 1: CONDITIONS TO DETECT DUPLICATE PROCESSING 21

Table 2: CONDITIONS WARRANTING A TIME STAMP 31

Table 3: PROCESSING TIME VALUES ... 33

Table 4: SINGLE THREADED PROCESSES AND EQUIVALENTS 38

vii

LIST OF FIGURES

Figure 1: A Logical Ring ... 5

Figure 2: Reporting of Status ... 7

Figure 3: Integrate Member - Process Dependencies 9

Figure 4: Integrate Member Process Specification 9

Figure 5: Monitor Process - Internal Structure and Dependencies 10

Figure 6: Error Condition Arising from Asynchronous Programs 11

Figure 7: Agreement Processor - Process Dependencies 12

Figure 8: Commit Processor - Process Dependencies 13

Figure 9: Actions for Committing a Change 14

Figure 10: FIFO Channel - Back Process ... 16

Figure 11: Agreement Processor ... 17

Figure 12: Determination of Token Originator's Failure 19

Figure 13: Relative Rank .. 20

Figure 14: Processing Agree Tokens ... 23

Figure 15: External Token Pool Message Format 24

Figure 16: Simultaneous Joins ... 25

Figure 17: Group View after I member has joined 25

Figure 18: Group View at Host & J2 ... 26

Figure 19: Processing of a Join Request Message / Token 27

Figure 20: Generate / Receive and Process a Commit Token 28

Figure 21: FIFO Channel - Front Process .. 29

Figure 22: Group Changes Required by the Filter Program 32

viii

Figure 23: Time Stamp File Format .. 32

Figure 24: Average Time for each Member to Implement a Join to the Group 34

Figure 25: Average Time to Implement a Failure in the Group 34

Figure 26: Single-Threaded Process Inter-Dependencies 37

ix

ACKNOWLEDGEMENT

Even though this thesis bears my name, there are two people who contributed

considerably to its completion . In addition to my efforts, the original code was written

and developed by Prof. Shridhar Shukla and LT Fernando Pires, Portuguese Navy. Their

help and cooperation made this project significantly smoother.

Finally, I would like thank my wife Sandi. Without her support and tolerance this

thesis would not have been possible. To her, I dedicate this thesis.

x

I. INTRODUCTION

A. BACKGROUND
1. Distributed Computing

Distributed computing is at the fore'ront of today's computing research. The

increased reliability and performance has resulted in distributed computing being used iL

various applications such as distributed control applications, distributed databases, and

real-time settings [1]. The need for fault-tolerant systems is particularly important to

military applications. Such applications typically require fault tolerant algorithms,

real-time response, on-line reconfiguration, and other schemes to increase reliability.

These requirements, however, lead to significant additional complexity. This complexity

arises in part due to the reliable inter-processor communication required to implement the

distributed processing. Networi-s are inherently unreliable and make reliable application

level message passing a non-trivial task. One of the primary requirements of reliable

distributed applications is a reliable multicast communicaion primitive. A group

membership protocol simplifies the construction of a such a primitive [2].

2. Group Membership

Cooperating processes constituting a single application share resources and

constitute a process group. Underlying the consistent behavior of such a group is the

requirement that all members of the group have implicit knowledge of all other members

in the group. Additionally, all members must perceive changes to the group in the same

order. Group membership will change as processes join)r depart the group. Departures

may be voluntary or involuntary as in the case of a failure. An additional requirement is

the timely detection of members failing. In order to enhance the robustness of the system,

intra-member monitoring must occur. This can be a simple exchange of messages

indicating that the process being monitored is still "live."

1

Historically, protocols solving the group membership problem have been of a

centralized design. One member acted as the group host and had the responsibility of

monitoring all subordinate members. All changes were detected by the host. Upon a

change to the group view, the host broadcast the new group view to all members of the

group. Obviously, problems can arise if the host itself falls. Voting must occur in order to

elect a new host with the added overhead associated with the voting. Additionally, the

processing requirements are unequally distributed between the members of the group as

the host takes a major share of the load.

B. SCOPE AND CONTRIBUTION
In this thesis, an implementation of the decentralized asynchronous membership

protocol is presented. The protocol was originally presented in [3] and [4]. It was further

refined and partially implemented in [5]. This thesis presents a brief overview to the

protocol. A more detailed explanation of the protocol and definitions can be found in [5].

This thesis covers additional refinements to the protocol necessary to correct flaws

discovered in the coding and testing phase of development. Additionally, the performance

of the protocol on an Ethernet Local Area Network (LAN) is presented and discussed.

C. ORGANIZATION OF THE THESIS
The thesis is divided into six chapters. Chapter II presents an overview of the basic

operation of the protocol. Chapter III discusses the changes required to implement

improvements to the protocol. Chapter IV covers possible further refinements to the

protocol. In Chapter V, the performance of the current protocol is analyzed. Chapter VI

presents the analysis and possible future areas of research. The code developed is

included in the Appendix.

2

II. GROUP MEMBERSHIP PROTOCOL

In this chapter, the group membership protocol (GMP) is described. The original

protocol was presented in [3] and further developed in [5]. This chapter presents an

overview of the protocol.

A. GROUP MEMBERSHIP PROTOCOL OVERVIEW
1. Assumptions

The following assumptions are made by the GMP in order for proper

implementation. A fully-connected network of reliable First-In / First-Out (FIFO)

communication channels connecting operational members is assumed. All failures arc

assumed to be crash or fail-stop[6]. This implies that a message sent will be delivered

unless the recipient has failed. However, there is no upper bound on the time oL delivery.

Multiple changes to the membership are allowed simultaneously. However, the

changes are committed one at a time and in the same order at all members.

A member is added to the group when a join is processed and is removed when

a failure is perceived.

The group name is assumed to be public. Those elements that may wish to

become members by joining the group have access to the group file which contains the

current group view. A prospective member searches for the file on a given site. The

group view is extracted and the prospective member sends thejoinreqst to the appropriate

address.

The protocol maintains three main databases at each member; the membership

list (group view), status table and token pool. Each has a separate database manager to

ensure mutual exclusion to all processes needing the services of the database.

2. Overview

The GMP guarantees that the group view changes occur in the same relative

sequence at all operational members of the group.

3

The most significant feature of the GMP is the decentralization. No single

member is responsible for detecting a change to the membership nor guaranteeing group

view consistency among the group members. A logical ring is used to implement both of

these functions in a distributed manner. The logical ring is a circular ordering of the

members of the group.

The physical location of the member has no relation to the ordering of the

logical ring. Within the ring structure the direction of traversal was arbitrarily chosen as

clockwise. Given the structure each member only monitors its anti-clockwise neighbor,

the acwnbr. The acwnbr responds to a status query, statusqry, with a status report,

statusrpt. Likewise, it sends a statusqry to its acwnbr. Thus, every member monitors

only one other member of the group and is itself monitored by it clockwise neighbor,

cwnbr.

Consider a five member group. Process p0 was the initial member of the group.

The other members joined in an order such that p0 is the acwnbr of pl, p, is the acwnbr of

P2, and so on. Member p, sends a statusqry to p0, which responds with a statusrpt.

Likewise, P2 sends a ;tatusqry to pr. This is illustrated in Figure 1. For clarity, only the

monitoring and response is shown for the first set of neighbors.

The ring configuration changes as the group membership changes. The ring

starts as a single member group with other members joining in some arbitrary order. All

changes to the group are treated in a similar manner. Members wishing to join an existing

group read the group membership file in the first active member located on the net. The

joining member then sends a joinreqst to the first member of the group. If the initial

parameters message, initparams, is not received in a reasonable time, the request is

transmitted to the next member in the group view file until all members have been

attempted or a successful join has been completed.

A failure is considered an involuntary departure. When a member departs the

group voluntarily, it simply stops responding to statusqrys. It will then be perceived as

failed and subsequently removed from the group. Delayed transmission of the statusrpt,

4

failure of the member to respond to the statusqry and a lost statusrpt will all result in the

monitored member being detected as failed.

POstammqr

direction of ring transversal

p3 p2

Figure 1 A Logical Ring

3. Processing of Individual Changes

The GMP allows for a two phase procedure for all changes to the group view,

the agree phase and the commit phase. An agree token is circulated around the ring.

Once the originator receives the token via the ring, all members have processed the agree

token. At this point the agree token is converted to a commit token, and the change

agreed upon is committed by each member as the token is circulated around the ring. The

protocol ensures that each token is received by all members, processed only once, and

never lost. More complete descriptions of the actions required by the different phases is

covered in the following section.

5

a. Departure Processing

Once a member perceives the departure of its arwnbr, voluntary or

otherwise, a failagree token is initiated. The failed member is added to the status table

with afailagree status. The token is incorporated into the token pool and transmitted via

the FIFO channel to the cwnbr. Similar processing occurs at members receiving a

failagree token for the first time. Once the token has been received by the originator, the

agree phase has been completed. The failed member is removed from the status table and

group view. The token pool is purged. The failcomit token added to the token pool and

transmitted around the ring. When a member receives afailcomit token for the first time,

similar processing occurs.

b. Join Processing

The protocol maintains a logical marker between the first and last members

to join the group. The first member is called the host. A new member will always join the

group as the acwnbr of the host. The host has the responsibility of initiating thejoinagree

token for the new member. However, the host may not be the member of the group that

receives a join request message from the new member. In this case, the message is

converted to a token, forwarded, and the new member is added to the status table. Once

the host has received either a joinreqst token or message, it initiates a joinagree token.

The host then adds the token to the token pool, the member to the status table, and

transmits the token to its cwnbr. Similar processing occurs when a member receives a

joinagree token for the first time. When the host receives the joinagree token via the

token ring, it initiates the commit phase.

The joincomit phase consists of purging the token pool, incorporating the

joincomit token in the token pool, adding the new member to the group view, and

forwarding the token. Additionally, the host will transmit the status table, group view,

and token pool to the new member in the initial parameters message, initparams. This is

accomplished by IntegrateMember.

6

Il1. PROTOCOL CHANGES

This chapter describes the revisions to the group membership protocol proposed in

[5]. Modifications discussed include lost messages, delayed transmission, lost token

acknowledgments, and proper termination of the agree phase.

A. LOST INITIAL PARAMETERS MESSAGE
1. Problem

Consider a lost initial parameters initparam message. After the initparam

message is sent, the joining member is regarded as part of the group by the sender even if

it is lost. However, the group membership, token pool and status table are not accurately

reflected in the joining member's local database. There was no mechanism for

re-transmission of the initparam message, nor was it possible to recreate the information

locally.

2. Solution

The status reporter is required authenticate the group membership. Reports are

generated in response to status queries from only those members that are in the group or

are joining the group. Status queries from outside the group are ignored. See Figure 2.

ReportStatus process at p,

I if (not blocked by IntegrateMember)
2 if (querying member e GVpt or hasjoinagree status)
3 P.. = querying member
4 send status to p..
5 if (previous querying member = p..)
6 send TokenPool(p8) to p.
7 end
8 end
9 end

end ReportStatus

Figure 2 Reporting of Status

7

3. Justification

A lost initparam message will result in the new member failing to respond to

the host's first statusqry. Upon time out, the new member will be considered a failed

process. The host's original acwnbr will then be monitored anew by the host. The new

member, never having received the initparam message will time out on the join request.

It will then attempt to join again.

By the time the initparam message is transmitted, the host's original acwnbr

has knowledge that the new member is now joining the group. Therefore, with this

change, the host's original acwnbr issues status reports to the new member's queries.

4. Side effects

Such group authentication will prevent multiple switching of the cwnbr. If the

initparam message is lost, the host's original acwnbr will be un-monitored for a short

time. Up' the failure detection of the new member, the host's original acwnbr will again

be monitored by the host process. To ensure that the StatusReporter responds only to

members within the current group view, IntegrateMember must be atomic with respect to

StatusReporter. This will prevent race conditions when initpawam message is received,

followed by an almost simultaneous receipt of the first status query from the host process.

Figure 3 shows the process dependencies, while Figure 4 depicts the specification for

IntegrateMember. The inter-process dependencies for the monitor processes are shown

in Figure 5.

Commit Sttus
Processor I Repo _::

Send Block
Initial Unblock
Parameters

Group View View-Request StatusTable, Status Table

Manager InitialGrou Request Manager--View
[~INTEGRATE •Status.Tabl

GroupViw

."MEMBERF Initial rToken-pool

Token Pool
Processor Initial InitiaLToken-PoolI Manager

Parameters TokenPoolRequest

SFIFO

BACK

Figure 3 Integrate Member - Process Dependencies

IntegrateMember

I if (initial parameters)
2 send blocking message to status reporter
3 send GVpj to group view manager
4 send unblocking message to status reporter
5 send STp, to status table manager
6 send TokenPool(p5) to token pool manager
7 else
8 get GVp from group view manager
9 get ST7 from status table manger
10 get TokenPool(p1) from token pool manager
I I assemble initparam message
12 send initparam message to new member
13 end

Figure 4 Integrate Member Process Specification

9

Agreement Integrate
Processor Misi

Block
Status Table I a le_Request Unblock

Manager t Initiate_
Token Token Pool

Manager

GroupView GrouDViewToken _Pool TokenPool_
ManagerRequest

S STATU sSTATUS
TIMER StartTie REPORTERT

.StM OuN1TORQPReCES.S ------ .--- o--

S Sta u_ Token-PoolStatasQuery iu Ty3 StatusReport

FEWO FIFO
BACK FRONT

Figure 5 Monitor Process - Internal Structure and Dependencies

B. DUPLICATE PROCESSING

1. Problem

The protocol was designed for processing in a member to be concurrent.

Consider AgreeProcessor and ComitProcessor. It is possible for the AgreeProcessor to

receive an agree token immediately followed by an external token pool containing the

same token. The token may be converted to a commit token and forwarded to

ComitProcessor. Due to context switching, processing of the commit token may not be

immediate. Further, AgreeProcessor begins processing the token pool which contains the

copy of the original agree token. Since the processing of the commit token has not

occurred, it is possible for the agree token from the token pool to be detected as requiring

10

conversion. The subsequent processing of the duplicate commit is an error. Figure 6

depicts the problem.

TLme Agreressor ComitProcesso

receive failagree token

process failagree

send init failcomit receive ini failcomit
receive external token pool

process failagree process failcomit

Sen :iufit'f'WliOhis: - update status
S-- purge token pool

error condition - commit change

Figure 6 Error Condition Arising from Asynchronous Programs

2. Solution

In order to solve this problem, CommitProcessor must be atomic with respect

to AgreeProcessor. (see Figures 7 and 8)

3. Justification

Both processors use the same databases. Rejection of duplicate tokens depends

upon the current state of the databases. Since token rejection is accomplished by

AgreeProcessor, and ComitProcessor updates the state to reflect the commit in progress,

AgreeProcessor must not begin its next iteration until ComitProcessor has updated the

state. ComitProcessor does not fully update the state until just prior to transmitting the

commit token around the ring. Refer to Figure 9, lines 1-3.

11

Join
Processor

InitiateToke Token(JoinRequest)

Group Vie Request Commi
Manager r ProcessorIGroup

View Block
Unblock

Status TablePR E TOken PTolknol rM anage] " 'M an a
T [-st AGREEM4ENT LoePo

StatusLTableRRequest

Token T[oe
Token-Pool Tke

BACK FRONT

Figure 7 Agreement Processor - Process Dependencies

12

Integrate
Member

4 Send_Initial_Parameter
._, ., .•:•j3tViwReq uest TokenGroup View GuDaView Initiae Token Agreement

*Uptdsate-s e CM IntiaeToknPo

View IBlock

S~ Unblock

Status TablePR E O Token PoolR
LManager ,I,,I[Manager
L' I I' I IToken an I 6

1 pd Iue s~tatus J COMMIT LTotmol n

/StatusfTable S] I T Tken-PoolRequest/

StatusTableRequest Defele_ I o
Token

FIFO
FRONT

Figure 8 Commit Processor - Process Dependencies

13

CommitChange for commitp,0k) at pi
/* Depending on whether a join or departure */

1 add or delete Pk from GVpi
2 delete Pk entry from STpi
3 vn(p) +- vn(p) + 1
4 delete all commit tokens received before agreePj(pk) from TokenPool(p)
5 if (join committed && joinreqp,(pt) c TokenPool(p))
6 delete joinreqp1 (pk)
7 end
8 add commitp,(p.) to TokenPool(p)
9 delete agreepi(p,)
10 if (current host = pk)
11 determine new p,.
12 end
13 if ((join committed) && (Ph.,, = P))
14 send ST.i, TokenPool(p), and GVr2 to acwnbr(p)
15 end
16 send commitp,(p) token to cwnbr(p)

end CommitChange

Figure 9 Actions for Committing a Change

C. INVALID DELETE TOKEN

1. Problem

An attempt to delete a nonexistent joinreqst token from the token pool would

result in an error condition and would hang the process. Thejoinreqst token is not always

present in the token pool. The token occurs only if a joining member has made the

request to a member that is not the host.

2. Solution

Before attempting to delete the joinreqst token, the token pool is checked. If

the token is present, it is then deleted. Figure 9, lines 5-7.

14

3. Justification

This is a special case token, and does not always occur in all token pools.

Exception handling as above will correct any incor sistencies among the various token

pools.

D. LOST TOKEN ACKNOWLEDGMENT

I. Problem

If the token acknowledgment is not received by the sending front process, the

token will remain on the queue. It will be re-transmitted every time that front receives a

message. The original token will be processed at the receiving end and further receipts of

the -ame token will be detected as du:plicates and discarded. The problem lies in that the

queue is ..ever cleared. Therefore, subsequent tokens will be blocked behind the token for

which the acknowledgment was lost, unless a failure of one of the two members occurs.

2. Solution

This problem is solved by checking the serial number of the message on the

receiving end of the FIFO channel. If the message is the last token received, the token

acknowledgment is re-transmitted.

3. Justification

If the message received is the expected token, an acknowledgment is sent. The

token is forwarded to the appropriate internal sub-process. If the last token received is

received again, a token acknowledgment is sent back and the duplicte token is discarded.

This mechanism will account and correct for lost token acknowledgments. Figure 10,

lines 17-19.

15

FIFO Channel - BACK process

1 Wait for a channel ready to ready
2 if (internal channel ready)
3 if (Status-Query)
4 update acwnbr
5 send Status-Query
6 else if (Initial Parameters)
7 update acwnbr
8 send Initial Parameters
9 else if (Join-Request)
10 send Join-Request
11 end
12 else /* external channel ready */
13 if (message originator = acwnbr)
14 if (StatusReport)
15 send Status Report to MONITORPROCESS
16 else if (Token)
17 if (SerialNumber = ExpectedSerialNumber - 1)
18 send TokenAck /* to acwnbr */
19 end
20 if (SerialNumber = Expected_SerialNumber)
21 send Token to AgreeProcessor
22 send TokenAck /* to acwnbr */
23 increment ExpectedSerialNumber
24 end /* out of order messages are discarded */
25 else if (TokenPool) /* TokenPool is always accepted */
26 send TokenPool to AgreeProcessor
27 send Token Ack /* to acwnbr */
28 set ExpectedSerialNumber = Serial-Number + 1
29 end
30 end
31 end

Figure 10 FIFO Channel - Back Process

E. AGREEPROCESSOR

The specification for the AgreeProcessor was rewritten to account for various

subtleties and to improve overall readability. All tokens received through the FIFO

channel layer are sent to AgreeProcessor for dispatching to the appropriate processor. A

16

duplicate token is one that has been previously processed at given member. Some scheme

to detect and reject duplicate tokens is required. Proper termination of the agree phase

and subsequent initiation of the commit phase are also required. Figure 11. In this

section, we discuss the operation of the agree processor.

AgreeProcessor for agreepJ(p,) at pi

I if (not blocked by CommitProcessor)
2 if (initiate agreement message received) /* pi = pj */
3 add agreepj(pk) to TokenPool(pi)
4 STp,(pk) <-- joinagreed orfailagreed
5 send agreePJ(pk) to cwnbr(p•)
6 send acknowledgment to calling process
7 else /* a token or external token pool is received */
8 if (ExtTokenPool)
9 for Vtokens r ExtTokenPool
10 if (token E TokenPool(pi))
11 if (originator failed)
12 ProcessToken
13 end
14 else /* token not in TokenPool */
15 if (received for the first time)
16 ProcessToken
17 end
18 end
19 end
20 else /* a token was received */
21 if (received for the first time)
22 ProcessToken
23 end
24 end
25 end
26 end

Figure 11 Agreement Processor

1. Initiate-Agreement Message

When AgreeProcessor receives an initiate-agreement message, the appropriate

agree token is generited, added to the token pool and forwarded to the cwnbr. The

17

status table entry for the subject is updated. An acknowledgment is returned to the calling

process. This reflects no change to the prior specification.

2. External Token Pool

When an external token pool is received, it is compared to the local token pool.

All tokens in the external token pool are examined. Processing of a token depends on

whether the token is also present in the local token pool.

If an agree token from the external token pool is in the local token pool, the

token originator may have failed. Due to a failure of the originator, the agree token is

requires conversion into a commit token at the first active clockwise neighbor of the

originator only. Such tokens are processed as if they had been received as a separate

token message. If the token is not present, it may have already been purged. These

tokens must be rejected as duplicates.

a. Token Originator Failed

Detection of the token originator failing prior to initiating the commit

phase is accomplished separately for joinagree and failagree tokens. Figure 12. It is

necessary for the next active member to detect the originator's failure and also initiate the

commit phase for the incomplete change started by the originator. The agree token may

be received as part of the external token pool. The token will also be present in the local

token pool from the acwnbr of the failed originator. This situation may also occur if a

member in the middle of the ring fails. The failed member's cwnbr will receive an external

token pool containing the original agree. However, this does not require a commit to be

initiated as the originator has not failed. It is essential that the differences be noted and

accounted for. The same conditions are present, but different processing must occur.

The originator's failure during ajoinagree phase can be detected if the rank

of the external token pool originator is greater than the rank of the current member.

Consider the host failing prior to initiating the commit phase. All members in the group

have agreed to the join. The joinagree token will be received by the new host upon ring

reconfiguration. The new host's rank is zero (0) while the external token pool originator's

18

rank is the (group size - 1). Since Rank(originator) > Rank(host), a commit must be
initiated.

Consider member p, with rank i failing during the joinagree phase. When

the failure of pi is detected, pi,., receives the external token pool from pi.l. The joinagree

token is present in both the external token pool and TokenPool(p,÷,). The token is

rejected since Rank(pi.) < Rank(pi÷1),.

LostAgreeToken

1 if (joinagree)
2 if (rank(p) > rank(p,))
3 return true
4 else
5 return false
6 end
7 end

8 if (failagree)
9 if (RP#,iveRank(p., p,) > RelativeRank(p%, p))
10 return true
11 else
12 return false
13 end
14 end

Figure 12 Determination of Token Originator's Failure

Now we consider a duplicate failagree token. Define RelativeRank(pj, p)

as the rank of p, with respect to p, instead of the host. A ring transversal starts and ends at

the same specified process, i.e. any given member follows itself in a ring transversal.

Figure 13. RelativeRank for a process that iq not a member of the group is undefined.

Recall the subject of a failagree remains a member of the group view until the commit is

processed. A lostfailagree token is determined by the RelativeRank of the token subject

p, and token pool originator p•.

19

Process Rank

RelaiiveRank (with respect to process #2)

Figure 13 Relative Rank

If the RelativeRank(p,, pi) ; RelativeRank(p.,, p•) the token originator has

failed and the failcomit phase should be initiated. This situation will occur if the failed

token originator itself fails prior to initiating the commit phase.

b. Duplicate Processing

Conditions to detect if a token has been received and processed already are

summarized in Table 1. It is necessary to detect duplicate processing if the external token

pool contains tokens not found in the local token pool. There are two possible ways for

this to occur. If the token has not been received and processed, or the token has been

purged from the local token pool.

20

Table I CONDITIONS TO DETECT DUPLICATE PROCESSING

Token

joinreqst

joinagree Pk e GVp,

joincomit

failagree e GV p

failcomit

Consider the commit phase. All members of the group have agreed to a

particular ring reconfiguration. Due to the latency of token transmission around the ring,

not all members commit the change simultaneously. Recall the token pool is purged of old

commit tokens and the corresponding agree token prior to the commit token

transmission. If a member that has committed a change receives an external token pool

from a member that has agreed to the change, the agree token remains in the external

token pool. Likewise, a previous commit token may be received as part of the external

token pool. Since the tokens have been processed and removed from the local token pool,

it is necessary to check the effects these tokens may have had on the group view, had they

been previously processed. For duplicate join tokens, the subject would already be a part

of the group view. Conversely, the subject of duplicate fail tokens would have already

been removed from the group view. In this manner, duplicate processing can be detected

and the tokens rejected.

It is not necessary to include all possible conditions for a token having been

processed. Recall the duplicate processing check occurs only if the token is not present in

the local token pool. For ajoinreqst, if the token is received as part of the external token

pool and has been purged from the local token pool, the joincomit must have occurred.

Since the result of the joincomit is subject becoming a part of the group, it is only

necessary to check the end result. Intermediate stages of the join process have not

deleted the joinreqst token from the local token pool. Since the token remains in the

21

token pool, it is in both local and external token pools and is rejected. Similar logic results

in the conditions presented in Table 1.

3. Tokens

Each type of token is handled individually upon receipt by AgreeProcessor.

Figure 14. AgreeProcessor acts as a filter to remove duplicate tokens before forwarding

non-agree tokens to the appropriate processor. Agree tokens are processed locally.

a. Joinreqst Tokens

The joinreqst tokens are forwarded to JoinProcessor for further

processing.

b. Agree Tokens

If the current process is not the originator of the token, and it is not part of

the local token pool, it is added to the token pool, the status updated and the token sent to

the cwnbr. This accounts for the first time an agree token is received and processed.

22

ProcessToken

1 if (joinreqst)
2 send token to JoinProcessor
3 elseif (commit)
4 send token to ComitProcessor
5 elseif (agree)
6 if ((p, * p,) && (agree token e TokenPool(p))
7 add agre%(pk) to TokenPool(p1)
8 STp(pk) +- FaiLAgreed or JoinAgreed
9 send agreep,(p.) to cwnbr(p,)
10 else pi
11 if ((pi = P) II (Vp1 I Pl'•Pi, P, r STP))
12 compute rank Vpe ST7 with Agreed status
13 if rank(pk) = smallest
14 send initiate_comit to ComitProcessor
15 else
16 ST11(pd) +--joinpendg orfailpendg
17 end
18 end
19 end
20 end

Figure 14 Processing Agree Tokens

If the current process is the token originator, or the first active process

clockwise from the originator that receives the agree token after it circulates around the

ring, the rank of all processes with an agreed status is computed. An initiate_commit is

transmitted if the subject is the lowest ranked of all processes fulfilling the above

conditions. If not, the subject's status is updated to pending.

c. Commit Tokens

A commit token is immediately sent to CommitProcessor for processing.

4. Side Effects

The external token pool mentioned above requires a new message type,

ExTknPool. Figure 15. The message includes the originator of the token pool as an

internal field. This is required by AgreeProcessor for determination of a failed token

originator.

23

EXTERNAL FORMAT
NUMBER ORIGINATOR : 0 'l GT SIZEI

SEIA MESGE txk • 'M ii SA(3:i••~i::,: POOL:::•::: TOKEN =

TOKEN FIELD

sp = Space character ITOKEN IITOKENI I TOKEN |
\n = New line character TYPE SUBJECIsPI ORIGINATORI

Figure 15 External Token Pool Message Format

F. MULTIPLE JOINS
1. Problem

Consider two members attempting to join a group almost simultaneously.

Figures 16-18. The first member's join will be completed properly. Upon completion of

the first join, it is possible to begin processing the second member's joinreqst before the

FIFO channels reflect the re-configured ring with the first member in it. It is possible to

complete the second join before the channels are re-configured. This can happen because

of the de-coupled protocol and FIFO channels. The host does not change its acwnbr until

it initiates a status query to the last member. The FIFO channel determines a member's

acwnbr as the target of the most recent status irv. The cwnbr is the originator of the

most recent statusqry received. There is an inherent latency involved in the FIFO channel

reconfiguration due to the timing considerations of subsequent statusqrys. Thus, it is

possible for a joinreqst from a second new member to complete both phases of the join

process prior to FIFO channel reconfiguration. The first new member may never have

processed the joinagree and joincomit for the second joining member prior to the second

member being incorporated into the group view. When the first joining member

determines its acwnbr and receives the external token pool, the joincomit token for the

second member may be present. Processing the token will result in attempts to delete the

corresponding nonexistent joinagree token never received by the first member and

subsequent removal of the second member from the status table. Both of these are error

conditions.

24

jok-PI joi-•

JFIFO Channels

Figure 16 Simultaneous joins

2. Solution

Initiate the FIFO reconfiguration upon transmission of the initial parameters to

the new member. Figure 10, line 7.

B Ring amording to "

Figure 17 Group View after I member has joined

25

3. Justification

The FIFO channel can be considered to be re-configured when the host

determines its acwnbr. The response from the new acwnbr is not required, as the FIFO

channel reject all tokens unless they are sent by the acwnbr. Tokens from the old acwnbr

are rejected and must be processed by the new acwnbr prior to being forwarded to the

host member.

Figure 18 Group View at Host & J2

G. OTHER IMPROVEMENTS

In this section, oversights to the protocol specification and the modifications required

are briefly described.

1. Joinreqst Token Processing

a. Problem

When processing a join message from a prospective member, InitiateJoin

adds ajoinreqsf token to the token pool prior to generating it.

26

b. Solution

If the current message being processed is a join message, generate the

joinreqst token and then add the token to the token pool. Figure 19, lines 10-13.

InitiateJoin for a join request message/token for p,. at pi

I while (true)
2 if (p. e ST7i, GVp1)
3 receive join request message or token for p,
4 end
5 if (Pi = PAos,)

6 send initiate agreement message to AgreeProcessor for p,.
7 block until AgreeProcessor acknowledges end of processing
8 else
9 STpj(p.) +- Jo&iRequested
10 if (join request message) /* p. locates pi and sends its join request */
11 generate joinreqp1 (P,J) token
12 end
13 add joinreq•(p,() to TokenPool(pi)
14 send joinreq token to cwnbr(p8)
15 end
16 end

Figure 19 Processing of a Join Request Message / Token

2. Commit Token Generation

a. Problem

If a member was in a pending status, a commit token for that process was

never generated prior to committing the change. These members would remain pending

indefinitely.

b. Solution

Create the commit token before committing the change for a member with

a pending status. Figure 20, lines 11-12.

27

ProcessCommitTkn for commitp,(pk) at p,

1 if (initiate commit message received)
2 generate commit token
3 token to be processed +- generated token
4 else if ((pi * p1) && (not duplicate))
5 token to be processed +- received token
6 else
7 exit
8 end
9 CommitChange
10 while (p, e ST• with pending status & Rank(p1) < Rank(p.), p., r STpi)
11 generate commit token
12 token to be processed 4- generated token
13 CommitChange in rank order
14 end

Figure 20 Generate / Receive and Process a Commit Token

3. Message Queue in the FIFO Channel Layer

The front processor was modified to transmit the head of the message queue

after receiving any message, either on the internal or external channel. Figure 21.

28

FIFO Channel - FRONT Process

1 Wait for a chanthel ready to read
2 if (external channel ready)
3 if (Status-Query)
4 send StatusQuery to MonitorProcess
5 else if (Join'equest)
6 send JoitR equest to JoinProcessor
7 else if (InitialParameters)
8 send InitialParameters to JoinProcessor
9 else if (TokenAck)
10 if (Received Serial-Number = Expected serial number)
11 remove Head of_Queue
12 decrement QueueCounter
13 end
14 end
15 else /* internal channel ready */
16 if (Token)
17 change Token to external format /* add external header */
18 insert Token in queue
19 increment SerialNumber
20 increment QueueCounter
21 else if (TokenPool)
22 discard all messages in queue
23 change TokenPool to external format /* add external header */
24 insert TokenPool in queue
25 increment Serial Number
26 increment Queue Counter
27 else if (StatusReport)
28 update cwnbr
29 send StatusReport to cwnbr
30 end
31 end
32 if (Queue-Counter > 0)
33 send HeadofQueue to cwnbr
34 set Expectedjserial number = Head of.Queue-serialnumber
35 end

Figure 21 FIFO Channel - Front Process

29

H. SYNOPSIS

This chapter has described the changes that were required to successfully implement

the group membership protocol. Changes covered coding as well as protocol related

problems not discovered in the original specification. These changes deal with the correct

functioning of the protocol and do not address performance issues. Performance is dealt

with in Chapter IV.

30

IV. PERFORMANCE OF THE GMP

The performance of the protocol on the Electrical and Computer Engineering Local

Area Network (ECE LAN) consisting of SUN2 workstations connected via an Ethernet,

was measured and the results are presented in this chapter.

A. LATENCY

The latency involved in processing changes to the group view is measured by each

member using the local time clock on each specific processor. Timestamps were

generated for the conditions listed in Table 2.

Table 2 CONDITIONS WARRANTING A TIME STAMP

m Stama Whege Taken in Code

t•, initiate an agree token

t., receive an agree token

t. send a commit token

The timestamps and related data were dumped to a file local to each processor. A

filter program was designed and written to compile the data from the various systems,

given a list of the members in the test group, and the maximum number of members. The

filter program was designed for a restricted set of all possible group views given the above

data. The case when the group view starts as the initial member, grows to the maximum

number of members and then shrinks to the original host is the only possible case handled

by the filter. Figure 22 illustrates the required group view changes.

31

Figure 22 Group Changes Required by the Filter Program

A further restriction is that all members departing the group must be the host's

acwnbr. This removes the need for a local database in the filter program to track which

members are part of the current iteratior of timestamp evaluations. Future improvements

to the filter program can implement a dynamic database to account for all possible changes

to the test group. The format of the output file is shown in Figure 23.

agree sp sec sp usec iti

agree sp sec sp usec recv cha e os j sp]originator

comit sp sec sp usec send sp= space

Figure 23 Time Stamp File Format

The time required to implement a change at a given member i is calculated by

subtracting the initial time stamp from the completion time stamp.

ti = tcj - tar i j host

ti = t. - ti I i = host

The average time to commit a change at each member was calculated as follows:

A ti

n
However, as the group increases from n members to n+1 members, the joinagree

must be processed by the n members currently in the group. Similarly, the n members

32

must receive and process the joincomit token. Hence, for a join to a group of n members,
the processing time must be n(tagree + tcoO,, where t.,,, is the time required to process an

agree token and tco,., is the time to process a commit token. The communication time to

transmit the token from one member to its neighbor is too. Since each of the tokens must
be transmitted to the n members, the total communication cost is t = 2n *tco,,).

Therefore, the total time required to implement a join at all members of a n member group

is
t = n(tagree + t co,,mut + 2tco,,)

Notice that the time to implement a change is proportional to the size of the group.

Table 4 PROCESSING TIME VALUES

lime Ourrnc

tag,,, time to process an agree token

t'o,•, time to process a commit token

tcomm inter-member communication time

Similarly, the expected time for a failure can be determined to have a linear

relationship to the size of the remaining group.

B. TESTING

The performance of the GMP was tested on the ECE LAN consisting of SUN

workstations linked via an Ethernet. There were no gateways between any of the

members of the group. Only single complete changes were allowed at any given time. A

complete reconfiguration included the underlying FIFO channel as well as the logical ring

structure. A linear relationship was observed between the number of members in the

group and the average time it took to commit the new member. Figure 24. Since the

communication depends heavily upon the network load as well as the individual processor

load, average values over a large variety of conditions such as time of day and number of

people on the network were generated in order to get reliable data points.

33

5

.13

0

0 I I I I I * * a . p * p I

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Final Group Size

Figure 24 Average Time for each Member to Implement a Join to the Group

Similarly, the time required to remove a member from the group view was obtained and

plotted. Thus, the relationship between time and group size was determined for a

decreasing group size. Again, only single complete changes were allowed. Figure 25. A

linear relationship was observed as expected.

2.5

S2

1.5

1

0.5

0 I I I I I I i ii i i i I

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Final Group Size

Figure 25 Average Time to Implement a Failure in the Group

34

V. METHODS FOR IMPROVING PERFORMANCE

In this chapter we explore two methods that might be used to further improve the

overall performance of the protocol. Each could be incorporated along with the other or

individually.

A. MESSAGE REDUCTION

The protocol as currently implemented has a high overhead due to the number of

inter-member messages required to effect changes in the logical ring structure. In order to

reduce the number of messages required for the maintenance of the logical ring, structure

three methods are discussed below.

1. TokenPool versus Tokens

Consider multiple near simultaneous changes to the group view. Transmitting

the token pool instead of individual tokens will result in a reduction of messages if the

changes occur close enough together such that the token pool for one change includes the

tokens for the subsequent changes. This will result in a decreased number of messages.

However, the probability of such changes occurring is minimal. Since changes to the

group are uncorrelated, the probability of such changes occurring is minimal. The

corresponding reduction of message traffic is negligible. Additionally, there is an increase

in the size of the message for most traffic. Modifications required to effect this include the

dynamic generation of the group view by the FIFO channel. Instead of receiving the token

pool for generation, the FIFO channel would receive a flag and, at that point, generate the

external token pool message. One such method might be to set a flag that indicates that

the token pool must be transmitted. FIFO properties are maintained by the order in which

the tokens are processed upon receipt. Reduction will occur only if multiple changes

occur prior to the transmission of the token pool for the initial change. Problems arise in

the correct setting of the transmit flag; i.e., did change #2 get sent in the last token pool,

35

or is another token pool transmit required. This method is not recommended since the

number of messages is reduced only in special cases.

2. Periodic Token Pool

Recall that tokens are generated only if a change to the group view occurs.

Another method that will reduce the number of inter-member messages is to periodically

send the token pool instead of individual tokens. In this manner, multiple tokens can be

transmitted simultaneously. Message reduction is indicated only if multiple changes to the

group view occur within the period of the token pool transmission. If this does not occur,

message traffic will actually increase; i.e., if there are no changes within this period the

token pool is still transmitted. This method will also increase the latency in phase

completion as tokens are not immediately forwarded around the ring. Additionally, the

message size will be increased. This method is not recommended either.

3. Piggyback the Token Pool

A further refinement would be to include the local token pool as part of the

status report. The monitoring member, upon receipt of a statusrpt, would parse the token

pool and process the appropriate tokens. FIFO channel requirements are maintained by

the order in which tokens are processed upon receipt of a token pool. This, however,

leads to additional processing for every status report.

Difficulties might occur in the latency of cycle completion in a large group.

Most notably, consider when a new member has requested to join an existing group.

Define t, as the latency within a process. It is the difference in time between receiving the

token pool via a statusrpt and transmitting the tokens around the ring. t, can be modeled

as a random variable. Ignoring the communication time, t., and the processing time,

t¢, associated with the normal processing of tokens, the latency for a change to an N

member group (i.e. a join request) becomes:
Two = 2(N x t)

Thus, the latency involved may become prohibitive for large N. This method is

recommended for implementation, provided that the latency of changes is not important.

36

Care must be taken to ensure the time-out on a join request is large enough to encompass

the worst case scenario. However, since the time-out is finite, this method place an

implicit upper bound on the maximum group size. Once the group is large enough, new

members will be unable to join due to the time needed to implement the join around the

ring.

B. SINGLE-THREADED PROGRAM

1. Problem

The current design of the protocol involves concurrent processes handling

specific areas of responsibility. Fully implementing this design would allow each process

to reside on different processors. However, in most cases, a single processor is the norm.

There is a significant amount of overhead due to the context switching and intra-member

messages. The asynchronous nature of the protocol has several areas requiring process

blocking as mentioned in chapter ImI.

2. Solution

Redesign the main process using a single-threaded program. Figure 26 shows

the recommended processes and inter-dependencies.

STOKEN

PROCESSOR

Figure 26 Single-Threaded Process Inter-Dependencies

3. Justification

The TokenProcessor would be a single-threaded program combining all aspects

of the current design as shown in Table 4. The watchdog timer must still be a separate

37

entity by definition. The FIFO channel is not included in the TokenProcessor as Back and

Front, are by nature, separate programs without any timing restrictions.

Table 4 SINGLE THREADED PROCESSES AND EQUIVALENTS

Single-Threaded jMP Multi-Threaded GMP

Timer Timer

JoinProcessor

AgreeProcessor

ComitProcessor
IntegrateMember

TokenProcessor
Status Table Manager
Group View Manager
Token Pool Manager

StatusMonitor
StatusReporter

BACK BACK

FRONT FRONT

The asynchronous nature of the design would be eliminated. The need for block

and wait would be eliminated if a single-threaded program design were to be used.

Additionally, the design would result in a significant decrease in the overhead costs due to

the inter-process messages and connecting services being eliminated. The single-threaded

program also eliminates the need for separate database managers. The TokenProcessor

can maintain all databases internally, with different pointers keeping the different databases

separate.

Concurrent with the new design, a review of all subroutines is recommended.

Current design and programming practices preserves all data passed to the subroutines.

This can lead to significant overhead since the data is stored multiple times.

38

VI. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the modifications required to implement the group membership

protocol as proposed by [5] are presented. The protocol has been successfully

implemented and to date has run continuously for more than 48 hours with a stable group

membership. Additionally, a group size of 20 members was achieved. These results,

though preliminary, are the first for this protocol. Although the protocol is functioning,

continued debugging and improvement are currently going on.

As expected, the time required to implement a change was found to have a linear

relationship to the eventual group size.

Further work should include the re-design of the protocol as a single-threaded

program. In this manner, the response of the protocol can be improved as inter-process

communication time is reduced drastically. However, attempting to implement the

message reduction schemes to improve performance is not recommended as there is little

to gain in the number of messages. On the contrary, implementation of the message

reduction schemes would result in a large increase in the latency of changes to the

membership.

Additional research is suggested in the area of network partitioning. Consider that a

network may partition in two separate halves that are fully connected on either side of the

boundary. A group originally existing on both sides will become two groups with the

same name operating independently on either side of the partition. The difficulty arises

when the network is repaired. The protocol does not provide for the possibility of

merging the two groups back into the original group. The problem of handling network

partitioning is non-trivial.

39

LIST OF REFERENCES

[1] A. Ricciardi and K. Birman, "Using process groups to implement failure
detection in asynchronous environments," in ACM Symposium on Principles
of Distributed Computing, Montreal, Quebec, Canada, pages 341-353,
August 1991. Also available as TR91-1188, Dept. of Computer Science,
Cornell University.

[21 Kenneth P. Birman, "The process group approach to reliable distributed
computing," Technical Report TR91-1216, Cornell University Computer
Science Department, Ithaca, NY, July 1991.

[31 S. B. Shukla, F. Pires, and D. Raghuram, "Design Implementation and
Performance of a Decentralized Group Membership Protocol for
Asynchronous Environments Using Ordered Views," Technical Report
NPS-EC-93-006, Naval Postgraduate Schooi, Monterey, California

[41 Shridhar B. Shukla and Devalla Raghuram, "Group Membership in
Asynchronous Distributed Environments Using Logically Ordered Views,"
Technical Report NPS-EC-92-009, Naval Postgraduate School, Monterey,
California

[51 Fernando Pires, "Design of a Decentralized Asynchronous Group
Membership Protocol and an Implementation of Its Communications
Layer," Master's Thesis, March 1993, Naval Postgraduate School,
Monterey, California

[6] Flaviu Cristian, "Agreeing on who is present and who is absent in a
synchronous distributed system," in Proceedings of the 18th International
Conference on Fault Tolerant Computing, Tokyo, Japan, pages 206-211,
1988.

[71 W. Richard Stevens, Unix Network Programming, Prentice Hall, 1990.

40

APPENDIX

The following code is included for completeness.

TABLE OF CONTENTS

Definitions & Utilities ... 42

Simple Application & Main Process 85

FIFO Channel Processes ... 95

M onitor Processes .. 105

Agree Processor .. 116

Commit Processor .. 131

Integrate Member Process 144

Join Processor .. 151

Database M anagers ... 159

Data Cruncher Program ... 180

41

DEFINITIONS

and

UTILITIES

Definitions ... 43

FIFO Utilities .. 44

GM P Utilities .. 50

M essage Utilities ... 67

Socket Utilities ... 77

42

ERR j i hiti
1I~iB

Table of Contents

FIFO Utilities 45

enqueue 45

dequeue 46

get-queuehead 46

flush-queue 47

send msgjfront 47

send_msg-back 48

sendack 48

sendmsgjin 49

44

*

* U
I
*
* *

*
*
*

* *
* *
* *
* *
* *
* *
* .� *
* *
* *
* *

*
*

* H *Ij1� * -

* - �
* � � � *

� .--.- � * +

*
*

**f.iiL *A �'
Ii*.IIi ciii

in tI��t � it'
:�-* .4;

* � *�ii

* *
* * *
* * *
* * *
* * *
* * *
* * *
* * *
* *

**
* *
*

** f
I I
* *
* *
* **
* *

*
*
*
*

*
*
*

* **

,�- * *I_ I
p

II
Iii *1 TilIlIffI I1 *� � I I

* * * * * * * * * * * * * * 1. * 3� I

*
* *
* *
* *
*
*

* I*
**0
* w

I
*
*
*
*

*

****�111'
*
tg�i
*

*

*1 *
* U

5 .� :
* 6) *
* , S

0.
*

*
* ** *
* *
* *
* *
* *
* **I *

*
* *
* *
* *
* *
* *
* *
* N
* U.

* A' *
* U
* U

*Ii *

* I
* *
* u
* *
*

*
* w�ii;�ILI 'it ii

*1

I *

Iiii **
*
*
*
*1�11 **
*
*
*
*

*hi *****I" **
*

*1f! *

It�I I
* -�

�- � l�.

1*! 1 II i
hiIIi0

tii I Ii'�

** *
* *
* **

1 **

*
*
*

* *
* *
* *
* *
* *
* *
* *
* *
* *
* **

*
*
*

I��I

I#iI11111.1 I�

____�!!'I!i� 'Ii � ii111111 _ H_

*
* *
4
** II *

3 1
*
* * +
* I
*
* *
* 4
* *
* *
* *
* *

* **i

*** iii, I
* I -'U*
* I -�
* I
* +
* w�
* Im4f -�

*
* V

Ii.t. *
*
* i�d3 2 ..�a

A Ithu *� Ht�
II .3.� tjhi

** is
*
*
*
*
4

4

41 1*
4
*44 1
* *

442 3

I
4 .. *
* �-%!

-i 1 *11111 ii� Ii 'I'
2

1$ � -�

I'
I;
I.' *

.6

41'

I
*

*I
I

I *I I
ii� *I.1

A
11111 1
U I b ""vi ii flljj

di illI II f� 1 .1 II U
*1 *g .�G

Table of Contents

GM P Utilities 51

GetAcwnbr 52

InStatusTable 55

CountDown 56

SendTkn2Agr 56

InGroup 57

GetMembWithRank 58

InTokenPool 59

TokensREqual 60

GetRank 61

GetTokenType 62

GetGroupSize 62

GetStatus 63

RelativeRank 63

GetGroupView 64

GetStatusTable 64

GetTokenPool 65

agreetoken 65

committoken 65

firsttim e 66

50

*

iii
.s�1 I
iI� �II

I ha!
I�t. OOO% �4

B I "ii h�bi��in

Ii � JJIJiiJJJJui
* *

* *

* *
* *
* *
* *
* *
* *
* *
* *
* **

*I *
* *
* * * *

**
*

4

**
I*I

* *
* A

*L I I"

l.aii a
I

'I �I. iI�j I�h�dnIii; � A liD
* 4 *4* * 4*4* * * * * *4*4 * *�

*
*

*

*

*£ I
* *
* *

* *I I
*
*
* I
*
*
*
*

�i*' II
.�I _

I
** U

* �i�uII
* � g E
*

* � �'

* i�Ij p
* ;-id
* '-U
*
** �
* 4 � �
*** -
** U

I

11111

8z +
Ii, v1i A

ii.
0' ~ jf

0*�

F

_ ii I
+

I

-ii"" i�j-*

_ II

II _

*1 * II
U. iI� ¶1

AdI a I

"A g*�

t0

I1'i I ¶1
-�

II
Ij *1 ii
IIj

U

H II�

**

*

*

*

*

*
*

*
*

I*

*

I
*

2

*

****iii
I

*

1i�i
*I

U

S

Jill! I *E.
iiI

�
'� Ii;

I i'� �g

II�
� J j�g

�I,

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

*

**'1 11I
*
* 3
* = *

*

* *

:4 :
* * 3

* :* f
* I
*
*
*
*
*

*

*** I �hj4 I H***
*
*
*

*I
*

*
** � I!' �
* mI, � its

*
*

*
*
*it **
*
*
*
*
*

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

*Iii
*

* I- *
* ia t:� �
* �

*
*
*
*
*I
*
*I�II

*

F.::
5I

i�i
1 ij�

*U""
�

�

**
**
**
*
*I ***
*
*
*
** ** ** ** ** ** ** ** *
*

* -* ** *
*i.� I

*

I
*

-
-

.' 5

*i�i
-�*iii S Iip

*1ii.' is IN� KiL IL .111
&*�o

.�

f'i�_�
filth

3

3

I �ui
4)ill I iii

ciI I� 4) (3
4) -

*
*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

*
* - *

*
� *

*
* - *
* ** � *
* *

*
* *
* 4) � **

- -- ** � * 30 *

* *
* .1g. *
* *
* *
* *
*
*
*
*

*
*

***�iIII *1 .1
* .r,5Ou� �
** --

*if * cl..

*
*
II

*

�2. �
I
*
*
* 4

*

Lii
*
*
*
* *
* *
* *
* *
* *
* *
* *
* *

*
*

*
* * *
* *
* *
* *

*
*
*
*

*i�I

II
* �)*s.� ;

* E
�

.� 4P. - *

t1�iiiII it I 4
II �j -I] i� �ai -

0

*
It

-I .1
0

-

I�iiiiI:- - � ii
*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* **I *

*
* *
* *
* *
* *
* *
* c,� t
*
* 5� -'
* * V 5
*

*

* *I

*
* I -4-
*

j�i I
I. Ii I I"
*

*

ij�
.�

ii...'
i[II��J

I
*

**

**

*I ******* ** *
* *
* *
* *

* * 5
**

* -

* *
*

$

i�j I ¶1 *11!111.1 iii�"v .�Io U
11ii 1i� � I I1;131 in!

_ 111111

* *
* *

*
* *
* *
* *
* *
* *
* *

*I **
*

* *
* *
* *
�
* �. *
*
*
*

*
*

* h� *
* .�

�
5

!�
**

:� j
*

* -� t
* � i
* �., q� *

* .�5 � *

II�
*
* *�p*

**

8
*
*
*� 4
*
**

*

**

**

**

lb
t� � -i I �

**

* :.�

2

*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

* *
* *
* *
* *
* *
4 *

* *
* *
* *

*
*
*

*
*
*

*

**

A
*

0 0 0 0
-

*
3 I�i..

F� h Ii v �

r
I.

I ,

jiI

Ijij!i i
* * l* .

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
*
* U *
* *
* **
* *
* *
* a' *

*
*

*
*

* * -w
* * *

* *

* * -j
* *

*
* 2 *
*
* 13 1 -�
* +:1 C,
*
*

[I �**1..t '-�II �*� ji�

* *
* *
* *
* *
* *

*I *
* *
* *

*I *
* *
* � *

*

* *
* *

*
* *

* *
* 4

I *� -*

I I I
Ii I *

'III
I.�i 'Iill2 FIlLilif tIIt� ii

IIt if
I *I II4 I *

I III
�

I�I �7. * 8I�I 1W!

I0� II *

H' H
I": InIII *�I

* p
i�i'Ii

[m.I.Ai lid �

* *

* *

* *
* *
*

**I
*4
*

*** I
*I

* j
*

II I 3..
ij I * -iU
II iii � ���iiI Ii

+ I!.� II�thu .Ii;p�
u.a �h �.

I
*

.2

I -�

.0 -� -

*

II II.�

*1 1KuN� 1 **��i .!.v I �� I'
*
* *
* *
* *
* *
* *I
* *

* U *
* *
* *
* I
*
* *
* - 0

** I
** 4IIa� �
* 13.0

*
*

.� .� liii it I
*
*

** I II .1 �*

mliiit

Table of Contents

Message Utilities 68

str2list 68

list2str 69

removelist 70

getfromlist 70

listsize 71

int2_ext 71

geLsr._nbr 72

m sg.type 73

in msg type 74

extjmsg_.type 74

get-target 75

get-originator 75

get-ext-target 76

67

*
* *
* *
* **

*I *
*
*I *
*

* I
* *
* *
* -q *
* *
* *
*
*
*
*
*

* �) *

4 I
**

*
*
*

*I
*
*

* #111!'!8

* � It iJ�rn
*** II

I ** II I
* * U
* * �- � j�
* � � a -

* *
* * *
* * *
* * *
* * *
* *
* * *
* *
* *
* I *

*I I *
* * I
* * *
*
* I II * *I *

*
* *

**
* '- i�I *
*
*
*
* �* *
* *
* *
* * *

* *
*;II ii Ii
** I
* � Ii I Iii J *"� iI�JI� p I

I *� dl �Ii I .111* I'*i � It 4*4*44*4*4

*

I.I

IIIiI���.�
-�

**

**

**

**

*I 'Ii
*I

**
*

*

iI'I' 1k� ii. I
Li111hip p

I-

huh II .1 iiiII I�I

** ** *
* *
* *
* *
* *
* *
* *
* **I *

*
* *
* *
* *

*I
*
*
*

*****�111*

*
*
*

*�llv
*

*** LIIi�i
** **

* *
* *
* *

*

* *I
*ii **
*
*
*
*

* *
* *
* *
* *
* *
* *

*
*
*
*
*

*

*****�IiiI*
*
*

*

****�iitI
�

* JtI1IiM�I1
I* .1:
*III
1.

*
* *
* *
* **

*

*I ***

* A
+

*Ir& i *11
.- * S

: +['huH
I

i
I
* - t

I* *11! �
* I * �

[m *e�

** �--* � �

*
* *
* *
* *
* *
* *
* *
* *
* *
* **

*
*

* *

*
*
** U
*
*
*
*
*
* 0*

*

liii'I �

ii

*
* *
* *
* ** ** *
* *
* *
* *

*
*

* *
* *

- *
* *
* �
*
*
*

*** I U
*:1111
** �

*� : *
*

I*11111w, 11
Ii

hi
*

* 4* ii liii

.- � -'
.� 0 0 -' So 0 0

HHHHHjIJ3Jt�j�
� .� .� �u

*
* *
* *
* **

*

**
*
*

*

I S�

I *M�I 5 !IbIe!II�IL�hUbhtIIII
�

*
*
*

*

.� *

* *
*

*
*
**

**
* I-
** �-G�* �
*

*

*

*

+
*

II-
* �

�i.5

Cu*

* I :�*-

r*2
)� it�

*
* ** * - iii t�
* t��m

** ** ** *
*
1 **
*
*
** ** � ** - e� *

* Cu�.I � *

*
*
*
*

*
**

U

*
*

*
*
*
*

**111111* g III
0 II

I *
*

* *
* *
* *
* *
* *
* **I *

*

* *
* *

*
**
*
*
*
*

**
*
*

* **iII!Ii *

* iii
* -

-� * +.11. +
* U

* 4�
* II �* - *

'I' 7g. _ .. .1
*

*a-�
* *
* II�
* * 4�j�

:*�*�

*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* � *
* *

*
*ii ***

**
*
*
*

* ** -

ii � I -�* I
II �

.� .. � .d j *

t I- Ii�
Ii t

I I

*
* *
* *
* *
* *
* *
* *
* *
* ***
* *
* sq *
* *
* *
* *
* ***

I ***

I *** *I
*
*
*

I
*
*
*

*

Table of Contents

Socket Utilities 78

createUDP 78

createUN 79

connectUN 79

readn 80

w riten 80

readm sg 81

writem sg 82

senmsg 83

recrnsg 84

77

- t

C
V

6'

*0q�'I
II

I

* *
* * *
* * *
* * *
* * *
* *
* * * 3 *
* * 3 *
* 3 * 3 *I 3 3*3
* ** * � I3 * J *t * 3 .
* 333
* * * *
* * 3 *
*
* N LI
*

** - dI
* 3*�3
* * *ts.
3Z * 3:�j

bi I I 5.�
* *
* a-...
* aII I j It

*

tij i��'ii5 Is. t� *

I 111
.u.mii.mii � I h

.********* *** I .u�i

:1I *

** tI �
* *
* * *

2

*

V

* �- *III
* j �Bj iiIii lit

I �: �* �II *:
* lilt 4�I liii j',� gui '1L HI I I

I ��tim
** =

* *

* *

* *

* *
* *I *

I
I I _

2 2Iiii -

1*11 liii I ILI
�1.iii .1I I liii *1 *iii

_ III.� U II
_ iI'ui ' II I

* *
* *
* *
* *
* *
* *
*
* I
* *

* *I **

*
*
*
*
*
*
*

** Ii**
*
*

*
*
*
*i�j
*

*

*

*

-�i
� *�-

* E � �. �

* 4 �
* .�- .�,; ��4I**
* - �-

**
*

* *
* *
* *
* *
* *
* *
* *
* *
�4I I
*
* *
*
*
*
*
*
*
*

** Ii
*

I
*
*�j1i
III'
*

I
I

niiI #j� jill IiiI Il 1 III

I " -

"* *

**
II

" I.S" *
* *!l .
* *l l !

ii* ° !
*it

* *
* I
*
* *
* *
* *
* *
* *
*

I* I
*
*

*****I
I

*
* I
*

* cu.L- I

* t
* iii .1I
trill I

ljij Jit .1 F� I �

ii' _

+

� iiI A
I I.:I [�
9 �

flu �c-� p
� A 1 1 �' -- -

�: � �

** I-

* *

* *

* * 0
*I * z

* **** A

* *
* *
* *

* *I �Ii

*

I .� I I!II'w11111111 iii 11111 liii

I�I� � 4 -

�I�fl �I

0
'I

0

aAl. j. I
+ 1.1111111:;

'I

*

*
*
*I ******* *

* *
* * 0
* *
* * V
* *
* *
* *

* ** ** *
* *
* *
* * or�
* *
* �

*4 IIt i. 1.1 ¶1
*I iii
* �

.�.

i*IIi 51" 14 Ii

A SIMPLE APPLICATION

and

MAIN PROCESS

Simple Application 86

M ain Process 88

85

* *

* *

j�I
Iii I. �

*

I :�. i�i

ii,! "1� III
� � �-; *

:* **4:�:
* * ***: * *

* *

* * *

* *

**
f

* I
* Ii1 * *
* * *
* * *
* * *
* * *
* * *
* .�.� � * *
*0 - * *
* � � .� - * *
* 0 * *

- * *

*** U.'

r.. 4* III
* 1 iI *11 * * : *] Ii � : *Hi I
i� I i�I

II �, hI Iii'

F�41IK� 4LI I *

K
IN
* *

* S

*

.1Ii:iii�Ij*
*Ot

*;z,: I!

I
I i yr

* *

*

: : I�II! *

* * F * �i�i

Ii *1 tilt I. I

- -

I
*

* **4** IA;
* *
* *
* *
* *
* *
* *
* *

* *

* * I -

4 *

* * *

**
*I pn _

*

** I ij;�
* � *
* *

* *iii ill � tIll
***** *

* **

* ** ** *

* I
* -� ***
* ** ** -u *
*
*
* = Jil I
**
*
*
*
*
*

*A WI
*
****I � �1 4 if
* **

*

I I **I *I i� 11111
I iIIiIi� 'if * :' I liii- I

W M�r�

I � II
*****ji.g*iiIi � ***

,_ -
4;fI

1-4

iAim

I- . 4
i g

il I B i' JIilI-~it1

oi 11.

** *

I I

1* *
* * ;

i I !
• -°I - I I i*.

*** ! i l * *

II

I1

* It i iLo

IF

poIIii The.

F iI

-a
I lkA 1; 1211o 1 41

*
*

**

ill *1
*

*I **
I

*

.1 *
*
* �'*

** �*

*

**
N.

*

i
lIjiHjIijjj1 ii

*
*

-

� �.

*

-
� *� -

-

I' _

liii jilt H
'II j*II II JJ iiiIIU

FIFO CHANNEL

FIFO Channel Process Dependencies 96

Front Process Specification 97

Back Process Specification 98

Front ... 99

B ack ... 102

95

Initial Parameters IN EG AT
MEMBER Tke

______ _ Jam_-Request Token COMMIT

Join RequestN Initial-Parameters PROCESSOR

ACWNROCEW SO MEMBER

(FRONT) - (FRONT) (BA K) BCKBAK

Figuen Al4 IFO Chane Pocs Dpednce

- ---- -- -- -- -- - -- - - ---9 6- -

FIFO Channel - FRONT Process

1 Wait for a channel ready to read
2 if (external channel ready)
3 if (StatusQuery)
4 send StatusQuery to MonitorProcess
5 else if (JoinRequest)
6 send JoinRequest to JoinProcessor
7 else if (InitialParameters)
8 send InitialParameters to JoinProcessor
9 else if (TokenAck)
10 if (Received Serial Number = Expectedserial number)
11 remove Head_ofQueue
12 decrement QueueCounter
13 end
14 end
15 else /* internal channel ready */
16 if (Token)
17 change Token to external format /* add external header */
18 insert Token in queue
19 increment Serial Number
20 increment Queue-Counter
21 else if (TokenPoof)
22 discard all messages in queue
23 change TokenPool to external format /* add external header */
24 insert TokenPool in queue
25 increment Serial Number
26 increment Queue Counter
27 else if (StatusReport)
2S update cwnbr
29 send StatusReport to cwnbr
30 end
31 end
32 if (Queue-Counter > 0)
33 send HeadofQueue to cwnbr
34 set Expectedserialnumber = Head.ofQueue-serialnumber
35 end

Figure A2 FIFO Channel - Front Process

97

FIFO Channel - BACK process

1 Wait for a channel ready to ready
2 if (internal channel ready)
3 if (Status-Query)
4 update acwnbr
5 send StatusQuery
6 else if (InitialParameters)
7 update acwnbr
8 send Initial-Parameters
9 else if (JoinRequest)
10 send Join-Request
I I end
12 else /* external channel ready */
13 if (message originator = acwnbr)
14 if (Status Report)
15 send StatusReport to MONITORPROCESS
16 else if (Token)
17 if (SerialNumber = Expected Serial Number - 1)
18 send TokenAck 1* to acwnbr */
19 end
20 if (Serial Number = Expected Serial-Number)
21 send Token to AgreeProcessor
22 send TokenAck /* to acwnbr */
23 increment ExpectedSerialNumber
24 end /* out of order messages are discarded */
25 else if (TokenPool) /* TokenPool is always accepted */
26 send TokenPool to AgreeProcessor
27 send TokenAck /* to acwnbr */
28 set ExpectedSerial Number = Serial-Number + 1
29 end
30 end
31 end

Figure A3 FIFO Channel - Back Process

98

0
V

0I, I Ii
V Lii 11

iii, Jo

�I �X��iii
�- U. .� �.

4)

* ** * * * * * ** * -
* * *
* * *
* * *

* *
* *
*

**

I ****A* * ** * *
* * *
* * *
* * *
* * *
* * *
* * *
* * *
* * *
* * *
* *
* *
* * *
* *
* *
* *

* t *
* * ii.
1 * I
*
*
* * I I
* 01

* II
j It I I 31k�Ii I jjI � I %ii� U,
i�*�* I�**** .m.m.d�I�'.J liii

I

ii-i

I *11i

II ti6jI bit

IF
* I
* I1 0
* *

*:1

** 1 4
* *
* *
* *
4 *

-� -'

* *
* *

*

:1- *4
*

:u I*
4 -- '

*

*1
jj:�

I.-
I I�i�

iA
-

:.�
-

-

�

4*4444

*
4

4

**
4 4 4
*

4

4
1

*
4

4
1 1

4
41 4 1

4
4

** 1 1* 4
4

4

* 4 1
*4 *

* 4 1
I 1
4
4*
*

S.

*�.

1*14

1:Z

_e4'

~ifII -

I *

t� �ii :1if �" 2 I1i1' iii I
I I �ih�

MONITOR PROCESS

Monitor Process Dependencies 106

Status Reporter Process Specification 106

Status M onitor 107

Satus Reporter 110

Tim er ... 113

105

Agreement Integrate
Processor Member

Block

Status Table Table_Request Unblock

Manager l tatim Tahle Initiate_
Token Token Pool

Manager
G r u V ie l IV ,e _ e u s

Grouo View Pool Token_Pool_
Manager Request--------------------. --. ------ ---- ----

Timo STATUS STATUS
TIMER MONITOR LREPORTER

St us_ Sta -_ TokenPool
s-w_&Query4, R)t Qu ry Staus-Report

FIFO FIFO
BACK FRONT

Figure A4 Monitor Process - Internal Structure and Dependencies

ReportStatus process at pi

1 if (not blocked by IntegrateMember)
2 if (querying member e GVp, or hasjoinagree status)
3 p.. = querying member
4 send status to p-..
5 if (previous querying member = pmo)
6 send TokenPool(p•) to p..
7 end
8 end
9 end

end ReportStatus

Figure AS Reporting of Status

106

I
.1 1 1 3

ii 1�i*i *1
1. U

- I � ihi �:Jtiuu'u ul � II
**

*
** *
* *
* ** ** * I*

**I **
* **
* *
* *
* * .5* 5 *
* K ** ** ** ** P * I* ** ** *

* * Ii.
I III p�.I iIi� I � *1

Ii� �jiP U
_ I ��II

*

*
I

5

& -�

I Ii ii

j�ii _ I iij
� II

-� 0 �
_

Ii I
*11 i -I.
Ii II * II

fljIi*1.1111 ill I
,I�

!I i
Ui I .- ++

.11:4

~ij

,SA ! *

Ii! ii I+ !° i

'U
:1
* *
* ,,
* *
* *
* *
* *
* *�* *
* *
* *
* *

* *
* *

* * a
* *
* *

** U' 5
* *
* *
* *
* *

i*�

: *�:I
� a'

I till 'I
U, Al ih.
*
* *
* *
* *
* *
* h *

*ii **
*

*ii
* I I
** I
***** d*
*
*
*
*

* I'11

I p.*IIi�I �11111 �
II

.j I

*

+

>1
1 *

I
#1

I II

' 2�iI'H UI

*

*

i�i -

5

Iiivi
I

Ii

j :lit � hi J4 '
ii.. I iii lititit in

F

*1i
d *

LI.

*11 CII IB.

ii
*Ii

. *

* •* *: !!i

-~4-4in

II
B

C6

cm-u

rI!*I
**

*I *

**
I

**
*

* I
*till
*2

*

* c�

*

I

t

IiII'I'�' ii, I
[I �511'7
** *
* *
* *
* *
** I
* *
* *
* *

* *I I
I
**

*Iii I
I �

i�J
.11
�

II" L! ¶1 1

AGREEMENT PROCESSOR

Agreement Processor - Process Dependencies 117

AgreeProcessor Specification .. 118

Determination of Token Originator's Failure 119

Processing Agree Tokens .. 120

A gree c .. 121

116

Join
Processor

InitiateTok A 6Token(JoinRequest)

Group View Request UiiTk ommit
Manager Group [• [

View Block
Unblock

S I
I ~~T o k e n • I I

T[Updazestatu AGREEMENT LTokenPoolI/
Status Table P C S TokenPoolReues

Status_TableReques
TokenPoolTokdaen_ t l Token

T I U te- BAGREEMONT T o

Figure A6 Agreement Processor - Process Dependencies

117

AgreeProcessor for agreep,(pk) at p,

1 if (not blocked by CommitProcessor)
2 if (initiate agreement message received) /* pi = pi */
3 add agreep,(pj) to TokenPool(pi)
4 ST 5(pk) *-- joinagreed orfailagreed
5 send agreepýpk) to cwnbr(p,)
6 send acknowledgment to calling process
7 else /* a token or external token pool is received *f
8 if (ExtTokenPool)
9 for Vtokens e ExtTokenPool
10 if (token E TokenPool(p1))
11 if (originator failed)
12 ProcessToken
13 end
14 else /* token not in TokenPool */
15 if (received for the first time)
16 ProcessToken
17 end
18 end
19 end
20 else /* a token was received */
21 if (received for the first time)
22 ProcessToken
23 end
24 end
25 end
26 end

Figure A7 Agreement Processor

118

LostAgreeToken

1 if (joinagree)
2 if (rank(p) > rank(p•))
3 return true
4 else
5 return false
6 end
7 end

8 if (failagree)

9 if (RelativeRank(pk, pi) > RelativeRank(pj, p•))
10 return true
11 else
12 return false
13 end
14 end

Figure A8 Determination of Token Originator's Failure

119

ProcessToken

1 if (joinreqst)
2 send token to JoinProcessor
3 elseif (commit)
4 send token to ComitProcessor
5 elseif (agree)
6 if ((p5 * pj) && (agree token e TokenPool(p5))
7 add agreep%) to TokenPool(p5)
8 STpi(pk) +- FailAgreed or JoinAgreed
9 send agreep,(p) to cwnbr(pi)
10 else pi
11 if ((Pi = P,) II (Vpl I p,--p5 , p, 6 ST1,))
12 compute rank Vp e STpj with Agreed status
13 if rank(p.) = smallest
14 send initiatecomit to ComitProcessor
15 else
16 ST,(p(k) -joinpendg orfailpendg
17 end
18 end
19 end
20 end

Figure A9 Processing Agree Tokens

120

* *
* *
* *
* * 5
* *

* * I
ii* 0

-

* *

[ii I.
I

ill1*11 II *1

i�i ii 1�1
* I.45 .- '-- .--.-

bA

- IllillIll liii �

*

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

**
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

* **4
4
4
4
*
*�ii *
*
*
* .w.J -�
* -J 5

*

* -� I
*Iii I iii

I Jjj�I : jj;

i��m ia -� � h �

.1ý4

clil

Ii . ,

3

Iii
S. _

i
I *:ii _ S.

.1 .� 2 *

cix .j�
if 1111 U11, 4

t-**** .�u

** *

* *
*

*

*I *

*

**
-�

* *
* * 3 3
* t�i
* *�r �
*

**
.3

*

* __
.�

** trn
**

I
*I
* a* d

I�i II
Ij�ii Iii liii "*� .� .1 Ii '�
iii _ �th iii Iti 11 iii,.a .� .qm

AJ-

ra

Iv
vi

AXA

+ +

* *q

* Id

*
* *
* *
* *
* *
* *
* *
** *
** *8

*
*
* *
*
*
*
*
*
*
*
*

** i�*.
*
*
*
*
* 2
*
*
*
*

* co..
* � U
* *=�o 2-
* +
* �8
* **�� 2
** .ri� 0

Iii I. I
_ ii ii .1 �r: uIW

� _ �

_

� F-
* �

* >U - U

I
I

II:!,
*ii.11 *

I

u�iIiH

I
I I
* *
* *
* *
* *
* *
* *
* *
* *
* *

*I **
**

*lit:** IIIg� *
* ii
*I� *�
*

*4) * a
*4�� *

*
*
*

* �ciXi*I�i� III I
5 .�ii. I

* c� *j � i
1% 'S

*� � � � �
-4)

.1
I II

I *� I Ii4

- 4)

If
-It

II

C'1

1' 5

ii!I 1

�: fII Ii'If � I �I
� I *i

�

*

* :1k 1
iii I a

vi I

11 *1' fly

5:' uf

0 ii
S-I ! i

3.

-�

I121 i�j�I8 - I *

0� n

- �

*
* *
* *
* *
* *
* *
* *
* *
* **

*I *
*

* *
* *
* -.� *
* - *
* .� *
*
*
* ** U *
* *
* .- �. *
* *I **
*
* I
* *I I
* *

I I-'
* j*g�
**
* *"�.M I'

* EOI it.
*
* .I�
*

I ii ��IIifii -3 ij

COMMIT PROCESSOR

Commit Processor - Process Dependencies 132

Actions for Committing a Change 133

Actions for Committing a Change 133

CommitProcessor .. 134

131

Integrate
Member

J Send_InialParameter
Group View uViw Request Token Agreementl

COMMIagoee Proso r

•rop eWIniiae ok

Block

Status Table PROCSO Token PoolRSManager [_ __[Manager

L • PROESSOR T okenPl-eus '

Token

FIFO
FRONT

Figure AIR Commit Processor - Process Dependencies

132

CommitChange for commitp,(pk) at pi

/* Depending on whether a join or departure */
1 add or delete P, from GV(p)
2 delete Pk entry from STpi
3 vn(..) <-- vn(p) + 1
4 delete all commit tokens received before agreepJ(p,) from TokenPool(pi)
5 if (join committed && joinreqp,(p.) r TokenPool(pi))
6 delete joinreqpj(pk)
7 end
8 add commitPj(Pk) to TokenPool(pi)
9 delete agreepj(p•)
10 if (current host = Pk)
I 1 determine new po,
12 end
13 if ((join committed) && (pl., = p8))
14 send STpi, TokenPool(pi), and GV(p) to acwnbr(pi)
15 end
16 send commitpph) token to cwnbr(p,)

end CommitChange

Figure All Actions for Committing a Change

ProcessCommitTkn for commit[,(pk) at p,

1 if (initiate commit message received)
2 generate commit token
3 token to be processed +- generated token
4 else if ((pi * p) && (not duplicate))
5 token to be processed +- received token
6 else
7 exit
8 end
9 CommitChange
10 while (p, c STp with pending status & Rank(p1) < Rank(p,,), p., E STJ)

11 generate commit token
12 token to be processed +- generated token
13 CommitChange in rank order
14 end

Figure A12 Generate / Receive and Process a Commit Token

133

jI1.I

-lit ii
S

� h � .� :
*
*
*

*
*
*

*
*
*
*
*

* * I
* *
* *
* *

* *

* * ii ��II
*
*
*
*
* *

* *
*it I it' t

I *
* *
* *

* *I
I[a - I ii �T
ii J�.uIg 1111 .� *Ia *�

I
1 4

+ j
�-' IIi�a. 0mliii ii

V.: t� U2'.J�i' �!i if �

t

I

I
jjJJ� � a .5I *Ii

*IFIj
* *
* *
* *
* *
* *
* * *
* *
* * E
* * -'
* *
* *
*
*
*
*
*

*

**lb 'I
* -.�
* _
*

* IL
**II '�i - *1�
* -

* - � *�n �ac
� .� � �-- :QI

*I _
" .�

* �

*
**

*
* �

1� j' .�I'. �

:1
I,
I

I IL
* it ii
I hi

I If
1.*

I I 1
-I t:

* .1 o

*! i
* ,
* ,-_ • •* •. •

* (I

• I-t(
*(I

• * (*(1

•*• (
* *5t(
* *tl
* (
* *, -t -

*(1
**..1

• *t(
(l *tl*l

1.i

* I
*11 J Iii�

-�

*

t7J I-' ii - St

�L H
J ii �

* II
A h)

�j � -j

_ UU �t�aI% II ��Ii

ii," I ir

AX

- +

fit

I r
iii * •

°* °*

o*

* *li

o•a

=I
Io'

r [!

INTEGRATE MEMBER PROCESS

Process Dependencies 145

Process Specification 145

Integrate Member Code 146

144

Commit Status
Processor Reporter

Send A4Block
Initial Unblock
Parameters

Group View ViewRequest Stats Table Status Table
Manager Initial Grou Request ManagerI View

[us M
INTEGRATE Status TableGroup

View 11
[fi

Initial MEMBER Toke-Pool

Join L -Token Pool
[J iProcessor Inta Initial Token Poo T k nP °![' _

Ii l - 1 M anager
Parameters Token_Pool_Request

Figure A13 Integrate Member - Process Dependencies

IntegrateMember

1 if (initial parameters)
2 send blocking message to status reporter
3 send GV to group view manager
4 send unblocking message to status reporter
5 send ST to status table manager
6 send TokenPool to token pool manager
7 else
8 get GVp, from group view manager
9 get STp, from status table manger
10 get TokenPool(p•) from token pool manager
11 assemble initparam message
12 send initparam message to new member
13 end

Figure A14 Integrate Member Process Specification

145

I
I

0
V

2

.1 L ii
I iI� K

i -�

dIUlUB I � li'I -

- �

* - *
* * * * * *
* * * *
* * * *
* * * * * *
* 4 * * *
* * * * * *
* * * * * *
* I 1 4 * *
* * * *
* * * *
* * *

*I * *
* 4 * *
* * 4 * *

a * t * *
I * * *

* 4
* * *I * *

* * * * * *

* * *
* * *
* * *

* * 4 * * *

:1 H Ii;: A
* * *

* * Li
* * *

* *I *4ji
* *I �Liii J� II *

*4*4'

*
*I I
* *
* *
* *
* *

*I *
*

* *
*I ***

**
*
*

*

*Ii
*
*

*

*** I
*
*
*If * �

�.cj H
I Ii*iI jjLI 1�Iii I�

�0d1� g
g

I
2

I
II ill.

�.II *�

Ii LI
I ijtI•If -i It I

S! lj I " * ! i

*

0*� 1
* -'3

-� �3Ii Ii lb

H II tini� fk ��.t11 " dxn iii
'I

*

*

*** *

**

*

* ***

** *
* *
* *
* *
* ** ** ** ** *

**U
'1* 1 iiill ijt 1*�

huh I
I
ii I II dJ�IFsI � I II. v 11kv 1; s1

U

"ii

. • ,

JOIN PROCESSOR

Process Specification 152

Join Processor Code 153

151

InitiateJoin for a join request message/token for p,,. at p,

1 while (true)
2 if (p. L STr•, GVp•)
3 receive join request message or token for p,
4 end
5 if (pi = phi.,)
6 send initiate agreement message to AgreeProcessor for p,,.
7 block until AgreeProcessor acknowledges end of processing
8 else
9 STp8(p,) <-- JoinRequested
10 if (join request message)/* Pp locates p, and sends its join request */
11 generate joinreqp(P,.) token
12 end
13 add joinreqp,(p,.) to TokenPool(p)
14 send joinreq token to cwnbr(p•)
15 end
16 end

end InitiateJoin

Figure A15 Processing of a Join Request Message / Token

152

* *
* a
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

*
*

* *
* *
* *

* *a
* ** ** ** **

*Ii II;**
** F0*

**
-= *

� *

*
*

� ***

�H! �
_ liii � -�tni��

*
*

* *
* *
* *
* *
* *
* *
* a
* *
* *
* *

*
*
*

**I -s I
* *
* I **

a-a *
*

I.' II -� **

- a*I *r *
* .�.-q *a

**
* *
* *I *
* *I�j aI ijill i� I

.1 �it 4'" !' -�I ill � I
t.�a * * a a * * * a * * * a a a a a.. a a * * a * * a. a: *� �

S~'

S!!*

.iofHi fl i

N I Ji

-4v-

05

Io.
-

IIt

a I?
+

:[jj 1111.. hi H

hh dL�4IH dill.
*
* *
* *
* *
* *
* *
* *
* *

* ***

* *

* *

Ii
* w

* ORI **J� ci I I
'� :1

I ii
1,..,Ii. "U''

I�iI

** *
* *
* *
* *
* *
* *
* *
* *
* *
* **

* I
* I-I

1*11 * I
hI� � I I

* S

* aid' 7� j �i

I Iii
�ii�d*i -� Ii�iI ii.1*111

itI
I
***"iii*

*
* �

* �-�

*

**
*

*
** $�
*

*

*

***!iib *

**
*

**]�Ii
U

*

*I
* -

I
5' 1iii
ii .1
a'

I'.

'ixI -

DATABASE MANAGERS

Group View Manager Process Dependencies 160

Status Table Manager Process Dependencies 160

Token Pool Manager Process Dependencies 161

Group View Manager 162

Status Table Manager 169

Token Pool Manager 174

159

Fiur A6Group View Manaew RoesqDeedeestJI

POE Group View PRO

AGREE View Reus UpU IE ndat View CMI

InitiaSSORou i AAE View RequestPRCSO

View R equest

FP"

INTGRAE •Group viewMEMRB(EURVE 2LoupView MOTO[RES

Figur AI6Grou View Maae rocess eedece

Status Table J Status Table
Request

AGREE Status Table Reuest Status Table ReuestCO

OCESOR Updaew Status UpdaewSau POCESSOR

INTEGR:ATE Sttu Table SttsTbl COIO

Figure A17 Status Table Manager - Process Dependencies

JOIN

AGREE Token Pool Request Token Pool R uest COMMIT
PROCESSOR Token Delete Token PROCESSOR

Token

Token Pool TOKEN POOL TeP

Token Pool Reuest MANAGER Token Pool Rquest

INTERATE Token Pool Token Pool MOIO

Figure A18 Token Pool Manager - Process Dependencies

161

if* *

* *I **
*I **

* *
* *
* *
* * *I I F

I I:
*

*
*

* *
* *

* * I iii�
* * _
* *
* ** ** ** *

* * iii.� I �
[Ia �1

I-
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *

* * * *I I I *
*
* *
* * *
I * I
* * *
* * * I
* * *
* * *
* * * *
* * * *
* * * *
* * * *
I * * I

* I *I '!I liii *

* **i 1.
* * I
* *
* * *1' I:
.Ii IIII 1

I 11.11 t:II*1 III ii

'-�

� .�

�
�iIi

*

I..

* *I *� *�

.8

0
V

-�

� �I
0 -
V

*

i liii 1111dl K I' " hiipIf!J - I, a
'�. I ;;

I
.1
ii
I

�i21

U -ii y..

*iI�i� 1�1�I1 Iiip.
*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* **
I *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* I-.'
*
* 2� I
*
* .�

.5it ii Li, Ii WI
I II111111 Ii I I

I J

*
* *
* *
* *
* *
* *
* *
* *
* *i *

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* ** ** *

* *
* *
* *
* *** *

*

I +
*

*

I-' II�r

*

IIi� �Ii IP. giE -

.� -

� �

*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* **

* i
*
* *
* *
* * +
* *

* -
*
*
*

*

** i
*

* ii*

It (I
*
* 'U II

-- *

II II II 'I � I

I g.5 �-

.5 * iJul
�

d�h ii) �
*
* *
*

*

* **

*
*
*
*
I I

*
*
*
*
*
*
*

*
*

*
*
*

* **

*
*

*
*

* **
*

*
*

* **
*

*
*

* **

* .Sf
ji. S

* I�*

It
* �*
* Al -

II � �
*

i

t
-iii *!*�

*1ii �
Lii tI� A1�1i ii

* *
* *
* *
* *
* *
* ** ** **

*I *
*

* *
* *
* *
* *
* *
* *

*
*
*
*I' ****
*

* *
* *
* *A *
* *o *

A **
*
*
*
*
*

*
II I Ii *

iii I
* *Li

� Li Ii'i jut;
*
* *
* *
* *
* *
* *
* ** ** **

*I
* *
* *
* *
* *
* *
* *
* *
* *

*

*
*
*
*
*

*
* *

� 1 5
*2 Cu U

h I -j
I� *** -� II�

* II�I s�
Ii d

3

*

II
+ -�

-

*
* *
* *
* *
* *
* *
* *
* *
* *

*
*I **

* *
* *
* *

U
* *
* *
*

**
+

* *
*

+

**
*
*
*

* �.st j
* �

,-� *

*

*
(N +�

I.
*
*
*
* +

*
*
*

*

a _

*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* * 0
* *
* * V
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* * 0
* *
* * V
* *
* *
* *
* *
* *
* *
* *
* *
* *
* * 1� Ii

I _ _

* _

* U II� _
* Fii� �(�

- � �;

Ii II.rn*� -

** * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *

*
*

* * *
* * � *
* *
* * *
* * : *
* * *
* *
* * *
* * *

** * *
* * *
* * * * *
4 * *
* 2 * 4
* *
* * *
* *
* * : *

* * *4* * *
*

* * *
* * f
* ** * *

*
** * 1.* * * *

*If J 11�1
* *

*** * *

* I
I� I i I I

4 0-�

:1 >< ! �t
4

* I-
*
*
* *I *

*
* *
* ** ** *

*I *
*

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

* * 5
** - -

* �
* dl WJ�'' -� 11W
* *� � S
* * I
* II.
* -� it
* * a
* .N �*- .�, �.

*
* U U

*�1 iii i,�.u, U �jtfl U
*
*
*
* =

*�1 �j1*1� 1PE " *
*
** � '- -i�i �

*

y
S *

*.1
II �IfjIi
xjii iii�Li ill

ii
I

**
II NtJ� P �fI' N

I -

i *

t j�I�II I.

*

* *

fi
* *

ii
I

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

*I
*I

+

*iI IH
* U *
* IIi 9 -

*9 f5I * �

I� �;�j jH *.. *j�;� j�f�-� �k�k -

*
* *
* *
* *
* *
* *
* *
* *

*
* * i

*

* *
* *
* *
* *
* *
* *
* * +
* - 0�'
*
*
*

*
*

2*

* *

* .- iiP 11*
* *
* * + +
* +
* Cu
* �
* U
* .� lb

II

Ii� I 111
LI � _�� !� h *fljf jj II � I

*
* *

*I
*
*

I *

II
I *
* *
* *

I. IIII
[II

I
ii 1Ž1

" i
I� I

-�

111*1
:'U hi � H _

*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

*I **
* *
* *
* *
* *
* I
*
* *I� *

*
*

**
*

*
* S
* A
*
*
*
*
*

* I III
*� *
*

I II�

liii �ij I.i�
Ii; _ :11111 � II IjtiII _ ill ii I i;.t IV

ii.* *
* *
* *
* *
* *

*
* *
* *

*

* j 0
* *
* *
* *
* *
* *
*
* *
* * C
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
*
* * *
**1 - -
* * C4

* *I I -

I- �tE-�
*

* * * -.-
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* *

* * ii
* *
* * ii
* 4

* *
* *
**** *
* 6 * *
* I
* *
*
* 3
* *

* 43

****** II
*

* �i f Ii UIi iii IIIIi 1 I. U
I B. a d
A C�) I jii *11�. *4* t�I Ei

-I *
*

ii

6
0
V -� I

yL� I
o�-

I. I i*i
�E�I

1giw tuft

I

I
I

*
*

* *
* *
* *
* *
* *
* *
* *
* *
* *
* ** *
* *
* *
* *
* * *
* **

*
*

*

*I +
*
*
*1*1 i*

*

I�:
*

:I *

*

*9 �

*
* *
* *
* *
* *
* *I

**
* 52
*

*
*
*

+
* S
*
*

- *

ii

- *Ii it

1.1 + + IT

*

I Ii
.2

�-

4) *

f�i 211 L
ll� Ut I

** *

* *
* *
* *
* *
* *
* *
* ** **

**t *
* *
* *

**
*

* 1'-
* �- 0

* .m ifiii *

I

'ii 1� * 'I
I

* I
* I
* I
**

I

1P1:£II.j j liP :11111
I" ii �IJ I fill IIi� � _ J Ji

I *

* *
* *
* *

I I
* *
* *
* *
* *
* *
* *
* *

I� *III
* *

A *

- [I
- *I U *

-�

* - *

* *.� *j� :
I **1 1*!:
I�j1fJJIIJj� '� I �1

* V �

*
* *
* *
* *
* *
* *
* *
* *
* *
* **I *

*
* *
* *
* *
* *
* *
* *
* *
* *
*
* *:� ?
*
*
*
*
*

*IIII j
* .� f
:� SE
*i� I +

* t
* .J.

*I: ii
* V 4 tL P Hi jII � di IlIg iii 'ii ii lilt,
�1 I� W i I

ii
i�#1

*
* *
* *

*
*
*
*I **
*
*
*
*

* *
* *
* *
* *
* *
* *
*
* *
* *
* *
* *
* *
* *
* *
*
* I
*
* *
* *
* *
* *

* -

* **1 6

5 *
*
*
* I .8

III �'�'I V

ii _.�j

DATA CRUNCHING PROGRAM

180

I
E

I
F

5

2

to..

�

0 0 � -- Ii - �' �

*
* *
* *

*

*
*ii **
*
*
*

* *
*

* *
* *
* * *
* � *
* *
* *
* *
* *
* * _
* *
* *
* *
* *
* 4
* *
* * 0
* *
* *
* 2� *

* *
* ��U2 0 *
* *
* *

4 -� *
* * I
* *

*

* 0 * *
* *
* 011 *

I * 111.1

1u
t**************I

-1 cii

cii
i il ' -

i 'IIi . .. I

II

V t tt)

i I SI I I

INr

"II•!

"o

I! ',I,

INITIAL DISTRIBUTION LIST

Number of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. Professor Shridhar B. Shukla, Code EC/Sh 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

5. Professor Randy L. Borchardt, Code EC/Bt 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. LT David J. Pezdirtz, Jr. 2
250 Fellows Ave.
West Jefferson, Ohio 43162

185

